CONTENTS

Introduction..5.2
 Purpose...5.2
 Policy ...5.3
 Forms..5.3

Tuberculosis Classification System.....5.4

High-Risk Groups5.5

Case Finding5.7
 Identifying suspected tuberculosis cases........5.7
 Follow-up on suspected cases of tuberculosis5.9

Diagnosis of Tuberculosis Disease... 5.11
 Medical history ...5.12
 Human immunodeficiency virus screening5.14
 Physical examination5.15
 Tuberculin skin test and
 interferon gamma release assays.................5.15
 Chest radiography5.16
 Bacteriologic examination5.17

Resources and References5.20
Introduction

Purpose

Use this section to understand and follow national and Alaska guidelines to

- classify patients with tuberculosis (TB) disease and latent TB infection (LTBI);
- detect suspected cases of TB;
- know when to report suspected or confirmed cases of TB; and
- diagnose TB disease.

It is important to understand when a person should be evaluated further for TB disease. Not recognizing TB symptoms promptly will lead to delays in treating a TB case—and to more infection, TB disease, and contacts to evaluate.

In the 2005 guideline, “Controlling Tuberculosis in the United States: Recommendations from the American Thoracic Society, Centers for Disease Control and Prevention, and the Infectious Diseases Society of America,” one of the recommended strategies to achieve the goal of reduction of TB morbidity and mortality is early and accurate detection, diagnosis, and reporting of TB cases, leading to initiation and completion of treatment.1

Contacts are mentioned within this section, but their evaluation and follow-up and contact investigation are covered in more depth in the Contact Investigation section 11.1. For information on treatment, refer to the Treatment of Tuberculosis Disease section 6.1.

Improvement in the detection of TB cases is essential to progress toward elimination of TB in the United States.2 Case detection includes the processes that lead to the presentation, evaluation, receipt of diagnosis, and reporting of persons with active TB.3 Detecting and reporting suspected cases of TB are key steps in stopping transmission of Mycobacterium tuberculosis because it leads to prompt initiation of effective multiple-drug treatment, which rapidly reduces infectiousness.4

TB is commonly diagnosed when a person seeks medical attention for symptoms caused by the disease or a concomitant medical condition. Thus, healthcare providers, particularly those providing primary healthcare to populations at high risk, are key contributors to TB case detection.5 The majority of pulmonary TB cases continue to be diagnosed at an advanced stage. Earlier diagnosis would result in less individual morbidity and death, greater success in treatment, less transmission to contacts, and fewer outbreaks of TB.6
A diagnosis of TB disease is usually based on positive cultures or nucleic acid amplification (NAA) tests for *M. tuberculosis*. However, TB may also be diagnosed on the basis of clinical signs and symptoms in the absence of a positive culture. Positive cultures or NAA for *M. tuberculosis* confirm the diagnosis of TB; however, TB may also be diagnosed on the basis of clinical signs and symptoms in the absence of a positive culture.

Policy

In Alaska:

- Persons who show or report signs and symptoms of TB should be; 1) evaluated for TB disease as described in the “Diagnosis of Tuberculosis Disease” topic in this section and 2) reported as suspected cases of TB as described in the “Reporting Tuberculosis” topic in the Surveillance section 2.6.

- Contacts should be evaluated as described in the Contact Investigation section 11.1.

For roles and responsibilities, refer to the “Roles, Responsibilities, and Contact Information” topic in the Introduction section 1.18.

Reports of suspected or confirmed tuberculosis should be made as soon as possible and must be made within 5 working days after first diagnosing or suspecting the existence of the disease.

Forms

Reporting forms and information are available in the Forms section (18.1) or at http://dhss.alaska.gov/dph/Epi/Pages/pubs/conditions/default.aspx
Tuberculosis Classification System

The system for classifying tuberculosis (TB) is based on how the infection and disease develop in the body. Use this classification system to help track the status of TB in your patients and to allow comparison with other reporting areas.

Table 1: TUBERCULOSIS CLASSIFICATION SYSTEM

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No tuberculosis (TB) exposure Not infected</td>
<td>No history of exposure Negative reaction to the tuberculin skin test (TST) or interferon gamma release assay (IGRA)</td>
</tr>
<tr>
<td>1</td>
<td>TB exposure No evidence of infection</td>
<td>History of exposure Negative reaction to the TST or IGRA</td>
</tr>
<tr>
<td>2</td>
<td>TB infection No disease</td>
<td>Positive reaction to the TST or IGRA Negative bacteriologic studies (if done) No clinical, bacteriologic, or radiographic evidence of TB disease</td>
</tr>
<tr>
<td>3</td>
<td>TB disease Clinically active</td>
<td>Mycobacterium tuberculosis complex cultured (if this has been done) Clinical, bacteriologic, or radiographic evidence of current disease</td>
</tr>
<tr>
<td>4</td>
<td>TB disease Not clinically active</td>
<td>History of episode(s) of TB Or Abnormal but stable radiographic findings Positive reaction to the TST or IGRA Negative bacteriologic studies (if done) And No clinical or radiographic evidence of current disease</td>
</tr>
<tr>
<td>5</td>
<td>TB suspect</td>
<td>Diagnosis pending</td>
</tr>
</tbody>
</table>

High-Risk Groups

Certain factors identify persons at high risk for tuberculosis (TB) infection and/or for progression to TB disease. Persons in the high-risk groups listed in Table 2: **Persons at High Risk for Tuberculosis Infection and Progression to Tuberculosis Disease** should be targeted for tuberculin skin testing in Alaska.

Persons with risk factors from both columns may be at much higher risk than those with risk factors in only one column. For example, an individual born in a high-TB-prevalence country with HIV infection is at much higher risk of having active TB than a US-born individual with HIV infection.

Table 2: PERSONS AT HIGH RISK FOR TUBERCULOSIS INFECTION AND PROGRESSION TO TUBERCULOSIS DISEASE

<table>
<thead>
<tr>
<th>For Tuberculosis Infection</th>
<th>For Progression to Tuberculosis Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ High-priority contacts such as housemates or coworkers or contacts of persons who have smear-positive pulmonary or laryngeal TB</td>
<td>▪ Persons with HIV infection</td>
</tr>
<tr>
<td>▪ Infants, children, and adolescents exposed to adults in high-risk categories</td>
<td>▪ Infants and children aged <5 years</td>
</tr>
<tr>
<td>▪ Recent immigrants (<5 years) from countries with high incidence of TB (Asian, African, Latin American, and Eastern European countries have TB rates 5–30 times higher than U.S. rates, and an increasing percentage of TB cases here are occurring among immigrants from those countries)</td>
<td>▪ Persons infected with Mycobacterium tuberculosis within the previous 2 years</td>
</tr>
<tr>
<td>▪ Recent immigrants from Mexico</td>
<td>▪ Persons with a history of untreated or inadequately treated TB disease</td>
</tr>
<tr>
<td>▪ Migrant workers</td>
<td>▪ Persons with radiographic findings consistent with previous TB disease</td>
</tr>
<tr>
<td>▪ Persons who have recently spent over 3 months in high-incidence countries (such as missionaries))</td>
<td>▪ Persons who use alcohol or illegal drugs (such as injection drugs or crack cocaine)</td>
</tr>
</tbody>
</table>
| ▪ Persons with high rates of TB transmission:
 ▪ Homeless persons
 ▪ Substance users
 ▪ Persons with human immunodeficiency virus (HIV) infection
 ▪ Persons living or working in institutions with individuals at risk for TB such as:
 ▪ Hospitals, especially staff in nursing, emergency departments, and laboratories
 ▪ Long-term care facilities
 ▪ Homeless shelters
 ▪ Residences for acquired immunodeficiency syndrome (AIDS) patients
 ▪ Correctional facilities | ▪ Persons who smoke cigarettes |
| ▪ Alaska-specific risk includes persons from the Southwest and Northern regions of the state and Alaska Natives | ▪ Persons with any of the following clinical conditions or other immunocompromising conditions:
 ▪ Silicosis
 ▪ Diabetes mellitus
 ▪ End-stage renal disease (ESRD)/chronic renal failure, hemodialysis
 ▪ Some hematologic disorders (e.g., leukemias and lymphomas)
 ▪ Other malignancies (e.g., carcinoma of head, neck, or lung)
 ▪ Body weight ≥10% below ideal body weight
 ▪ Prolonged corticosteroid use
 ▪ Use of other immunosuppressive treatments (e.g., prednisone or tumor necrosis factor-alpha [TNF-α] antagonists)
 ▪ Organ transplantation
 ▪ Gastrectomy
 ▪ Chronic malabsorption syndromes
 ▪ Jejunoileal bypass |

In developing a diagnostic approach for the evaluation of those with suspected LTBI, we recommend the clinician weigh the likelihood of infection, the likelihood of progression to TB if infected, and the benefit of therapy (Horsburgh and Rubin, Clinical practice: latent tuberculosis infection in the United States. N Engl J Med 2011; 364:1441–8). Recommendations were formulated for each of the 3 groups illustrated above. These groups are concordant with current recommendations for the interpretation of the TST (2000, Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm Rep 49:1-51).

Figure 1. In developing a diagnostic approach for the evaluation of those with suspected LTBI, we recommend the clinician weigh the likelihood of infection, the likelihood of progression to tuberculosis if infected, and the benefit of therapy (Horsburgh and Rubin, Clinical practice: latent tuberculosis infection in the United States. N Engl J Med 2011; 364:1441–8). Recommendations were formulated for each of the 3 groups illustrated above. These groups are concordant with current recommendations for the interpretation of the tuberculin skin test (American Thoracic Society, Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Recomm Rep 2000; 49:1-51). Abbreviations: CXR, chest radiograph; HIV, human immunodeficiency virus; LTBI, latent tuberculosis infection; Mtb, Mycobacterium tuberculosis; RR, ; TB, tuberculosis; TST, tuberculin skin test.
Case Finding

Identifying Suspected Tuberculosis Cases

Most tuberculosis (TB) cases are detected during the medical evaluation of symptomatic illnesses. Persons experiencing symptoms ultimately attributable to TB usually seek care not at a public health TB clinic but rather from other medical practitioners in other healthcare settings. Professionals in the primary healthcare sector, including hospital and emergency department clinicians, should be trained to recognize patients with symptoms consistent with TB.

- Be alert for cases of TB among:
 - Persons who are contacts of patients with pulmonary TB
 - Persons with newly diagnosed infection with *Mycobacterium tuberculosis* (sometimes referred to as TB skin test converters).

- Screening for TB disease is especially important for:
 - Immigrants and refugees with Class B1 or Class B2 TB notification status. See B Notifications section 4.1.
 - Persons involved in TB outbreaks, and occasionally in working with populations with a known high incidence of TB.
 - When the risk for TB in the population is high and
 - Persons in jails, prisons, and other congregate facilities.

The clinical presentation of TB varies considerably as a result of the extent of the disease and the patient’s response. TB should be suspected in any patient who has a persistent cough for more than two to three weeks, or other compatible signs and symptoms.

Note that these symptoms should suggest a diagnosis of TB but are not required. TB should be considered a diagnosis in asymptomatic patients with chest radiographs compatible with TB.
Table 3: WHEN TO SUSPECT PULMONARY TUBERCULOSIS IN ADULTS

<table>
<thead>
<tr>
<th>Historic Features</th>
<th>Signs and Symptoms Typical of TB</th>
<th>Chest Radiograph: Immunocompetent patients</th>
<th>Chest Radiograph: Children and patients with advanced HIV infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure to a person with infectious tuberculosis (TB)</td>
<td>Prolonged coughing (≥2–3 weeks) with or without production of sputum that might be bloody (hemoptysis)§</td>
<td>Classic findings of TB are upper-lobe opacities, frequently with evidence of contraction fibrosis and cavitation¶</td>
<td>Lower-lobe and multilobar opacities, hilar adenopathy, or interstitial opacities might indicate TB</td>
</tr>
<tr>
<td>Positive test result for Mycobacterium tuberculosis infection</td>
<td>Chest pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence of risk factors, such as immigration from a high-prevalence area, human immunodeficiency virus (HIV) infection, homelessness, or previous incarceration*</td>
<td>Chills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis of community-acquired pneumonia that has not improved after 7 days of treatment†</td>
<td>Fever</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night sweats</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loss of appetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weakness or easy fatigability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malaise (a feeling of general discomfort or illness)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Table 2: Persons at High Risk for Tuberculosis Infection and Progression to Tuberculosis Disease.
† Patients treated with levofloxacin or moxifloxacin may have a clinical response when TB is the cause of the pneumonia.
§ Do not wait until sputum is bloody to consider a productive cough a symptom of TB. Sputum produced by coughing does not need to be bloody to be a symptom of TB.
¶ These features are not specific for TB, and, for every person in whom pulmonary TB is diagnosed, estimated 10–100 persons are suspected on the basis of clinical criteria and must be evaluated.

Extrapulmonary Tuberculosis

If a patient has a positive tuberculin skin test or interferon gamma release assay (IGRA), consider signs and symptoms of extrapulmonary TB.
Follow-up on Suspected Cases of Tuberculosis

When a suspected case of TB is identified, the following should be done:

When a suspected case of pulmonary TB is identified, refer to Table 4: Guidelines for the Evaluation of Pulmonary Tuberculosis in Adults in Five Clinical Scenarios in the “Diagnosis of Tuberculosis Disease” topic in this section 5.11. This table presents guidelines for the initial steps of TB case detection in five clinical scenarios encountered by providers of primary health care, including those serving in medical emergency departments.23

To report a suspected or confirmed case of TB, call the Alaska TB Program at 907-269-8000, or after hours, at 800-478-0084. Prompt reporting allows the health department to organize treatment and case management services and to initiate a contact investigation as quickly as possible.24

The patient should be masked and immediately excluded from the workplace, school and social activities and if hospitalized should be placed in airborne infection isolation (AII) until confirmed noninfectious. For more information, see the “Isolation” topic in the Infection Control section of this manual 17.15.

Laboratories should report positive smears, NAA or positives cultures, and primary healthcare providers should report suspected or confirmed cases of TB to the Alaska TB Program, as specified in the “Reporting Tuberculosis” topic in the Surveillance section 2.6.

Within 48 hours of suspect identification, administer a tuberculin skin test (TST) or IGRA and obtain a chest radiograph. Evaluate the patient for TB disease as specified in the “Diagnosis of Tuberculosis Disease” topic in this section.

- In remote locations patients may begin TB treatment based upon history, clinical findings, and smear results.
- Individuals who require commercial air transport to a medical facility for a chest radiograph should not travel until they are noninfectious. This generally requires completion of 14 days of TB medications; clinical improvement and three (3) consecutive negative AFB smear results.
When managing TB suspects or cases in remote villages and communities, please consult the Alaska TB Program at 907-269-8000 for guidance.
Diagnosis of Tuberculosis Disease

The diagnosis of TB disease is often overlooked because of the failure to consider it among possible diagnoses. While a definitive diagnosis may involve the addition of laboratory and radiographic findings, a high degree of suspicion can be based on epidemiology, medical history, and physical examination. In considering TB disease, it is also important to consider factors that may affect the typical presentation of TB, such as the patient’s age, nutritional status, and coexisting diseases.

An individual who is suspected of having TB disease requires a complete medical evaluation, including the following:

- Medical history, including exposure, symptoms, previous treatment for TB, and risk factors
- Human immunodeficiency virus (HIV) screening
- Physical examination
- Tuberculin skin test or interferon gamma release assay
- Chest radiography
- Bacteriologic examination

When a suspected case of pulmonary TB is identified, refer to Table 4 for guidelines for the initial steps of TB case detection in five clinical scenarios encountered by primary care providers and emergency physicians.25
Table 4: GUIDELINES FOR THE EVALUATION OF PULMONARY TUBERCULOSIS IN ADULTS IN FIVE CLINICAL SCENARIOS

<table>
<thead>
<tr>
<th>Patient and Setting</th>
<th>Recommended Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any patient with a cough of ≥2–3 weeks’ duration</td>
<td>Chest radiograph and collect 3 sputum specimens for acid-fast bacilli (AFB) smear microscopy and culture</td>
</tr>
<tr>
<td></td>
<td>Note: Where chest radiography is not available, collect 3 sputum specimens for AFB smear microscopy and culture</td>
</tr>
<tr>
<td>Any patient at high risk for TB with an unexplained illness, including respiratory symptoms of ≥2–3 weeks’ duration†</td>
<td>Chest radiograph and collect 3 sputum specimens for AFB smear microscopy, culture, and NAA.</td>
</tr>
<tr>
<td></td>
<td>Note: Where chest radiography is not available, collect 3 sputum specimens for AFB smear microscopy, culture and NAA</td>
</tr>
<tr>
<td>Any patient with human immunodeficiency virus (HIV) infection and unexplained cough or fever</td>
<td>Chest radiograph, and collect 3 sputum specimens for AFB smear microscopy and culture</td>
</tr>
<tr>
<td>Any patient at high risk for TB with a diagnosis of community-acquired pneumonia who has not improved after 7 days of treatment†</td>
<td>Chest radiograph, and collect 3 sputum specimens for AFB smear microscopy, culture, and NAA</td>
</tr>
<tr>
<td>Any patient at high risk for TB with incidental findings on chest radiograph suggestive of TB even if symptoms are minimal or absent†§</td>
<td>Review of previous chest radiographs, if available, 3 sputum specimens for AFB smear microscopy and culture</td>
</tr>
<tr>
<td>• Opacities with or without cavitation in the upper lobes or the superior segments of the lower lobes.²⁸</td>
<td></td>
</tr>
<tr>
<td>† See Table 2: Persons at High Risk for Tuberculosis Infection and Progression to Tuberculosis Disease (5.6).</td>
<td></td>
</tr>
<tr>
<td>§ Chest radiograph performed for any reason, including targeted testing for latent TB infection and screening for TB disease.</td>
<td></td>
</tr>
</tbody>
</table>

Medical History

The clinician should interview patients to document their medical histories. A written record of a patient’s medical history should include the following:

- Exposure to infectious TB
- Symptoms of TB disease (as listed in Table 3: When to Suspect Pulmonary Tuberculosis in Adults [5.8], Table 4: Guidelines for the Evaluation of Pulmonary Tuberculosis in Adults in Five Clinical Scenarios [5.11], and Table 5: Symptoms of Tuberculosis Disease [5.12]).
- Previous TB infection or disease and history of treatment with anti-TB medications
- Risk factors (as listed in Table 2: Persons at High Risk for Tuberculosis Infection and Progression to Tuberculosis Disease [5.6])
- Recent medical encounters (e.g., going to the emergency department for pneumonia)
- Previous antibiotic therapy

1. **Exposure to Infectious TB:**
 Ask patients if they have spent time with someone with infectious TB.

Question patients about whether they know of any contact in the recent or distant past with persons diagnosed with pulmonary or laryngeal TB. It is important to note that patients often refer to latent TB infection (LTBI) as TB disease. Be aware that most persons become infected with *Mycobacterium tuberculosis* without knowing they were exposed. Clinicians should also consider demographic factors that may increase a patient’s risk for exposure to TB disease and drug-resistant TB, such as country of origin, age, ethnic or racial group, occupation, and residence in congregate settings (such as a jail, homeless shelter, or refugee camp) or Alaska-specific risk factors such as residing in the Southwest or Northern regions of the state, being Alaska Native or experiencing homelessness.

2. **Symptoms of TB Disease:**
 Ask patients about their symptoms.

Although TB disease does not always produce symptoms, most patients with TB disease have one or more symptoms that led them to seek medical care. When symptoms are present, they usually have developed gradually and been present for weeks or even months. Occasionally, however, TB is discovered during a medical examination for an unrelated condition, such as ruling out a cancer diagnosis (e.g., through a chest radiograph given to patients before surgery).

The symptoms in Table 5 below may be caused by other diseases, but they should prompt the clinician to suspect TB disease. For historic features and chest radiograph results that should raise suspicion of pulmonary TB disease, refer to Table 3: **When to Suspect Pulmonary Tuberculosis in Adults 5.8**.

Table 5: SYMPTOMS OF TUBERCULOSIS DISEASE

<table>
<thead>
<tr>
<th>Pulmonary</th>
<th>General: Pulmonary and Extrapulmonary</th>
<th>Extrapulmonary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coughing</td>
<td>Chills<sup>30</sup></td>
<td>The symptoms depend on part of body affected by tuberculosis (TB) disease:</td>
</tr>
<tr>
<td>Coughing up sputum or blood</td>
<td>Fever</td>
<td>- TB of the spine may cause pain in the back.</td>
</tr>
<tr>
<td>Pain in the chest when breathing or coughing</td>
<td>Night sweats</td>
<td>- TB of the kidney may cause blood in the urine.</td>
</tr>
<tr>
<td></td>
<td>Loss of appetite<sup>31</sup></td>
<td>- Meningeal TB may cause headaches or psychiatric symptoms.</td>
</tr>
<tr>
<td></td>
<td>Weight loss</td>
<td>- Lymphatic TB may cause swollen and tender lymph nodes, often at the base of the neck.</td>
</tr>
<tr>
<td></td>
<td>Weakness or easy fatigability<sup>32</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malaise (a feeling of general discomfort or illness)<sup>33</sup></td>
<td></td>
</tr>
</tbody>
</table>
3. Previous Latent TB Infection or TB Disease:
Ask patients whether they have ever been diagnosed with or treated for TB infection or disease.

- **Patients who have had TB disease before** should be asked when they had the disease, how the disease was treated, and how long they took medications. Ask how many pills were taken per day (to determine what treatment regimen was used and whether they received injections). If the regimen prescribed was inadequate or if the patient did not follow the recommended treatment, TB may recur, and it may be resistant to one or more of the drugs used.

- **Patients known to have a positive skin test reaction** probably have TB infection. If they were infected within the past two years, they are at high risk for TB disease if certain immunosuppressive conditions exist or if immunosuppressive therapies are being taken. See Table 2: Persons at High Risk for Tuberculosis Infection and Progression to Tuberculosis Disease (5.6). For persons previously skin tested, an increase in induration of 10 mm within a two-year period is classified as a conversion to positive.

4. Risk Factors for Developing TB Disease:
Determine whether patients have any conditions or behaviors that are risk factors for developing TB disease.

For a list of behaviors and conditions that appear to increase the risk that TB infection will progress to disease, see Table 2: Persons at High Risk for Tuberculosis Infection and Progression to Tuberculosis Disease (5.6).

Human Immunodeficiency Virus Screening and Hepatitis Screening

Counseling and testing for human immunodeficiency virus (HIV) is recommended for all patients with TB. Contacts at high risk for HIV infection should also be considered voluntary HIV counseling and testing.35

The Centers for Disease Control and Prevention (CDC) recommends the following:

- Routine HIV screening for all patients ages 13–64 seeking health care for any reason, without regard to any patient’s known risks for HIV infection

- Annual HIV screening of patients known to be at high risk

- All patients in TB Clinics should be tested for HIV. This includes persons with TB disease or LTBI.37
All patients with a history of injecting drug use, birth in Asia or Africa (or other hepatitis virus endemic regions), or who have HIV should have baseline testing for hepatitis B and C.38

Physical Examination

A physical examination is an essential part of the evaluation of any patient. It cannot be used to confirm or rule out TB, but it can provide valuable information about the patient’s overall condition; other factors, such as human immunodeficiency virus (HIV) infection, which may affect how TB presents; and the presence of extrapulmonary TB.39

Tuberculin Skin Test and Interferon Gamma Release Assays

Use the Mantoux TST to test for M. tuberculosis infection in persons who do not have a previous positive TST. Note that for patients with a previous documented positive TST reaction, a TST is not necessary. Blood assay for Mycobacterium tuberculosis (BAMT) is a general term referring to recently developed in vitro diagnostic tests that assess for the presence of infection with M. tuberculosis. This term includes, but is not limited to IGRAs. The IGRA currently approved by the Food and Drug Administration (FDA) and available on the market is QuantiFERON®-TB Gold (QFT-G), which can be used in all circumstances in which the TST is used. QFT-G usually can be used in place of the TST.40 Other cytokine-based immunoassays are under development and may also become useful in the diagnosis of M. tuberculosis infection. Future FDA-licensed products, in combination with Centers for Disease Control and Prevention (CDC)-issued recommendations, may provide additional diagnostic alternatives.41 At the present time, IGRA testing is only available through private laboratories in Alaska. The Alaska TB Program does not provide or pay for IGRA testing.

The advantages of IGRA, compared with the TST, are that results can be obtained after a single patient visit, and that, because it is a blood test performed in a qualified laboratory, the variability associated with skin test reading can be eliminated. In addition, the IGRA test appears to be less affected by past bacille Calmette-Guérin (BCG) vaccination than the TST and may eliminate the unnecessary treatment of patients with BCG-related false-positive results. However, the IGRA test has practical limitations that require that blood collected is handled, incubated and processed according to test-specific protocols.42

For both the TST and IGRA, additional tests, such as chest radiography and bacteriologic examination, are required to confirm TB disease.

Persons with a positive TST or IGRA result, regardless of signs and symptoms, should be evaluated for TB disease before LTBI is diagnosed. At a minimum, a chest radiograph should be examined for abnormalities consistent with TB disease.
A negative TST does not rule out TB disease—as many as 20% of patients with TB disease have a negative TST reaction. A negative TST result should not be used alone to exclude *M. tuberculosis* infection in persons with symptoms or signs suggestive of TB disease. Medical evaluation of such persons should include a history and physical examination, chest radiograph, bacteriologic studies, serology for human immunodeficiency virus (HIV), and, when indicated, other tests or studies.

For more information on the Mantoux TST, see the Diagnosis of Latent Tuberculosis Infection section 7.2. For more information on IGRAs and the QuantiFERON®-TB Gold (QFT-G) Test, see the CDC’s “Guidelines for Using the QuantiFERON®-TB Gold Test for Detecting *Mycobacterium tuberculosis* Infection, United States” (*MMWR* 2005;54[No. RR-15]) at http://www.cdc.gov/mmwr/pdf/rr/rr5415.pdf.

Chest Radiography

A posterior-anterior radiograph of the chest is the standard view used for the detection and description of chest abnormalities in adults. In some instances, other views (e.g., lateral, lordotic) or additional studies (e.g., computed tomography [CT] scans) may be necessary.

Children younger than 5 years of age should receive posterior-anterior and lateral radiographs. See Diagnosis and Treatment of Latent Tuberculosis Infection (LTBI) and Tuberculosis Disease in Children (under 16 years of age) 9.1

Certain abnormalities on chest radiographs are suggestive, but are not diagnostic, of TB. In pulmonary TB, radiographic abnormalities are often seen in the apical and posterior segments of the upper lobe or in the superior segments of the lower lobe. However, lesions may appear anywhere in the lungs and may differ in size, shape, density, and presence or absence of cavitation, especially in HIV-infected and other immunosuppressed persons.

In HIV-infected persons, pulmonary TB may present atypically on the chest radiograph. For example, TB may cause opacities without cavities in any lung zone, or it may cause mediastinal or hilar lymphadenopathy with or without accompanying opacities and/or cavities. In HIV-infected persons, almost any abnormality on a chest radiograph may indicate TB. In fact, the radiograph of an HIV-infected person with TB disease may even appear entirely normal.
For more information on chest radiography, see the Curry International Tuberculosis Center’s *Radiographic Manifestations of Tuberculosis: A Primer for Clinicians* (2011) at

http://currytbccenter.ucsf.edu/products/product_details.cfm?productID=EDP-04

Bacteriologic Examination

Refer to Table 6 below to determine the types of specimens needed to assist in the diagnosis of TB.

Table 6: SPECIMENS FOR DIAGNOSING TUBERCULOSIS DISEASE

<table>
<thead>
<tr>
<th>Suspected Diagnosis</th>
<th>Specimen Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary or laryngeal tuberculosis (TB)</td>
<td>Three morning sputum (phlegm from deep in the lungs) samples for TB smear and</td>
</tr>
<tr>
<td></td>
<td>culture examination.</td>
</tr>
<tr>
<td></td>
<td>If a diagnosis of pulmonary TB cannot be established from sputum smear, other</td>
</tr>
<tr>
<td></td>
<td>procedures may be necessary, including nucleic acid amplification (NAA),</td>
</tr>
<tr>
<td></td>
<td>bronchoscopy, and gastric aspiration in children.</td>
</tr>
<tr>
<td>Extrapulmonary TB</td>
<td>Depending on the anatomical site, other clinical specimens are necessary, such as:</td>
</tr>
<tr>
<td></td>
<td>▪ Urine</td>
</tr>
<tr>
<td></td>
<td>▪ Cerebrospinal fluid</td>
</tr>
<tr>
<td></td>
<td>▪ Pleural fluid</td>
</tr>
<tr>
<td></td>
<td>▪ Pus or other aspirated fluid</td>
</tr>
<tr>
<td></td>
<td>▪ Biopsy specimens</td>
</tr>
<tr>
<td></td>
<td>▪ Blood (heparinized)</td>
</tr>
</tbody>
</table>

CDC recommends the use of a rapid molecular test (NAA or GeneXpert) on at least one (1) specimen from each patient with signs and symptoms of pulmonary tuberculosis for whom a diagnosis of tuberculosis is being considered but has not been established, and for whom the test result would alter case management or tuberculosis control activities.46

Weblink:
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5801a3.htm?s_cid=mm5801a3

Contact the Alaska TB Program at 907-269-8000 to request molecular testing for patients meeting these criteria. Refer to Table 7 below for information on the
bacteriology tests used to diagnose TB.

Table 7: **BACTERIOLOGY TESTS USED IN DIAGNOSING TUBERCULOSIS DISEASE**

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Laboratory Turnaround Times</th>
</tr>
</thead>
</table>
| **Acid-Fast Bacilli (AFB) Smear** | • Provides the physician with a preliminary confirmation of the diagnosis. It usually is the first bacteriologic evidence of the presence of mycobacteria in a clinical specimen.
• If positive, gives a semiquantitative estimate of the number of bacilli being excreted (which is of vital clinical and epidemiologic importance in assessing the patient’s infectiousness). | • On-site test: within 24 hours from specimen collection.
• Off-site test: within 24 hours from laboratory receipt of specimen (time from specimen collection to laboratory receipt should be 24 hours or less). |
| **Nucleic Acid Amplification (NAA) Test** | • A test done on clinical specimens for the direct and rapid identification of the *Mycobacterium tuberculosis* complex.
• Allows for the amplification of specific target sequences of nucleic acids that will be detected by a nucleic acid probe.
• Does not replace the need for routine AFB smear and culture. | GeneXpert® Xpert® MTB/RIF Assay:
• On-site test: within 24 hours from specimen collection
Off-site test: within 24-48 hours from laboratory receipt of specimen
TB PCR
• Off-site test: within 24-48 hours from laboratory receipt of specimen |
| **Culture** | • Usually necessary for species identification of all clinical specimens suspected of containing mycobacteria.
• Is required for drug susceptibility testing and genotyping. | • Mycobacterial growth detection: within 14 days from specimen collection
• Identification of mycobacteria: within 21 days from specimen collection |
| **Drug Susceptibility Testing** | • For first-line drugs: Is performed on initial isolates of all patients to identify an effective antituberculosis regimen.
• For both first-line and second-line drugs: Is repeated on interim isolates when a patient remains culture-positive after 3 months of treatment. | • First-line drugs (ASPHL): within 15 days from identification
Second-line drugs (Reference lab): 4 weeks from laboratory receipt of isolate |

Laboratories should report positive smears, cultures, NAA or GeneXpert results and primary healthcare providers should report suspected or confirmed cases of TB to the health department, as specified in the “Reporting Tuberculosis” topic in the Surveillance section. Prompt reporting allows the health department to organize treatment and case management services and to initiate a contact investigation as quickly as possible.57

For information on reporting, see the “Reporting Tuberculosis” topic in the Surveillance section 2.6.

For a list of all of the laboratory services available and information on specimen collection and shipment, see the Laboratory Services section (12.1) or visit: http://dhss.alaska.gov/dph/Labs/Pages/publications/default.aspx
Resources and References

Resources

- ATS, CDC, IDSA. “Diagnosis of Tuberculosis in Adults and Children” (Clinical Infectious Diseases 2017;64[2]:1-33). Available at: https://www.cdc.gov/tb/publications/guidelines/pdf/cid_ciw694_full.pdf
- CDC. Self-Study Modules 1 – 9 on Tuberculosis (Division of Tuberculosis Elimination Web site; 2016). Available at: http://www.cdc.gov/tb/education/ssmodules/default.htm

References

9. CDC. Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR 2000;49(No. RR-6):8–9.
15. ATS, CDC, IDSA. Controlling tuberculosis in the United States: recommendations from the American Thoracic Society, CDC, and the Infectious Diseases Society of America., MMWR 2005;54(No. RR-12):33; CDC. Medical evaluation. In:

ATS, CDC, IDSA. Diagnosis of Tuberculosis in Adults and Children. *Clinical Infectious Diseases* 2017; 64(2):1-33.

CDC. Medical evaluation. In: Chapter 4: diagnosis of TB. Core Curriculum on Tuberculosis (2004) [Division of Tuberculosis Elimination Web site]. Updated 2013. Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5905a1.htm?s_cid=rr5905a1_e

CDC. Medical evaluation. In: Chapter 4: diagnosis of TB. Core Curriculum on Tuberculosis (2004) [Division of Tuberculosis Elimination Web site]. Updated 2013. Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5905a1.htm?s_cid=rr5905a1_e

